英国AI

2018-07-08 13:40:52  作者:urlmulu.com 点击: 评论:0

  

概要

 

人工智能(AI)的出现和发展可以给英国带来巨大的社会和经济效益。借助人工智能,计算机能够比人类有更高的准确性和速度进行信息分析和学习。从药物研发到智慧物流,人工智能技术的融入,提高了效率、完善了性能,为绝大多数的行业甚至是各行各业都带来了可观的收益。其实,人工智能可以理解成是一种软件,通过更好地抓取和利用信息从而帮助做出更准确和高效的决策,并将其整合到现有的流程中,实现实时的改进,帮助扩大规模,并降低成本。

 

据估计,截至2035年,人工智能将给英国经济增加8140亿美元(约合6300亿英镑)的额外收入,届时,GVA年增长率有望从现有的2.5%飙升至3.9%,我们的愿景是让英国成为世界上最适合发展和部署人工智能的国家,从起步、发展到繁荣,实现技术所能带来的最大便利。

 

英国计算机科学家艾伦·图灵(Alan Turing)对于人工智能的发展起到了至关重要的推动作用,也因此被世人尊称为“人工智能之父”。尽管其他国家和跨国公司正在大力投资人工智能开发,但至少在目前,英国仍被视为全球AI技术和专家的主要聚集地之一。报告建议,为确保英国在AI领域的领先地位,应将重点更多的放在如何在图灵的基础上更好地开展工作。

 

报告指出,应该结合以下的几大关键因素,综合提升人工智能的能力:

 

1.新的和更大的数据量。

 

2.提供具有特定高水平技能的专家。

 

3.实现越来越强大的计算能力。

 

如今机器性能提升越来越容易,而且未来将会更加简单。为了继续开发和应用人工智能,英国需要增加更广泛的行业的访问数据量。

 

报告建议:

 

1.提升对数据开发的信任,提升信息数据的共享性。

 

2.让更多的研究数据便于机器理解。

 

3.支持文本和数据挖掘,并将其视为一种研究的标准和不可或缺的工具。

 

人工智能的繁荣发展离不开大量技术娴熟的AI专家的支持。但目前英国人才缺口较大。为更好地发展人工智能,英国需要储备更多技术娴熟的人工智能人才。同时推动较低水平技术与AI的合作。

 

报告建议:

 

1.设立由企业资助的大学AI硕士课程。

 

2.通过市场调研设立人工智能课程,以满足雇主的多方面需求。

 

3.在英国领先的大学中,增加200多个人工智能博士学位,并以优厚的条件吸引来自世界各地、拥有不同背景的人才。

 

4.设立线上人工智能课程和持续的专业技能培训。

 

5.实现人工智能领域多样性发展。

 

6.在英国设立一个国际人工智能奖学金项目。

 

目前,英国在人工智能的关键研究领域里有着出色的表现。未来,英国人工智能的发展将会在更多的应用领域开展,其涉猎范围更广,研究方向更加细分,这其中还包括合作研究的能力。

 

报告建议:

 

1.阿兰·图灵研究所应该成为人工智能和数据科学研究的国家性质的研究基地。

 

2.大学应该推动知识产权转让的标准化。

 

3.人工智能研究的计算能力应通过合作和协商来提升。

 

人工智能的普及意味着,通过更好地理解人工智能可以做什么,以及在哪里方面可以落地应用,从而增加人工智能的需求和供应。

 

报告建议:

 

1.成立人工智能委员会,用于促进促进行业发展和合作。

 

2.制定指导纲要,解释人工智能的决策和流程。

 

3.支持出口和对内投资。

 

4.引导推动人工智能技术的成功落地和行业发展。

 

5.设立专项,以支持公共部门使用人工智能。

 

6.资助公共组织举办的数据类挑战赛。

 

研究表明,在这些领域实施的举措可能会给英国人工智能的发展带来新的蜕变。同时,为使英国处于全球AI领先地位,本报告列出了以下18条具体建议,其中包括针对政府、企业和学术界如何共同努力发展AI的建议。

 

建议书

 

一、关于增进数据访问的建议。

 

1.为方便持有数据的组织与希望使用数据开发人工智能的组织之间的数据共享,政府和行业应通过一个程序来开发和建立数据信任,即通过验证的、可信的框架和协议,来确保数据交换是安全的和互利互惠的。

 

2.为提高开发人工智能系统的数据可用性,政府应该保证一定数额的研究资金用于AI数据开发,同时确保以机器可读的格式发布底层数据,并提供明确的版权信息,且尽可能地对外开放 。

 

3.为支持文本和数据挖掘,并将其视为一种研究的标准和不可或缺的工具,英国应规定一种默认设置,即对于已发表的研究来说,读取数据也就是挖掘数据的权利,并且这不会产生替代原始作品的产品。在评估如何支持文本和数据挖掘时,政府应该将人工智能的潜在数据包括进来。

 

二、关于提高技能的建议

 

4.政府、企业和学术界必须充分认识到人工智能行业各类人才的价值和重要性,并应共同努力,打破成见,扩大参与。

 

5.企业应出资赞助大学AI硕士学位课程的开设,且预计首批学员规模达300名。

 

6.对于除计算机和数据科学专业之外的毕业生,学校应与用人单位以及学生本身,一起探讨人工智能专业毕业生的潜在需求。

 

7.政府应与全英知名大学共同打造至少200个人工智能博士学位。并且,随着英国教育的发展和吸引的越来越多的学术人才,这个数字还会持续增长。

 

8.高等院校应鼓励设立与发展AI MOOC、线上人工智能课程和持续的专业技能培训,为那些具有STEM资格的人提供更多的专业知识。

 

9.英国人工智能协会国际奖学金项目应与艾伦·图灵研究所合作创立图灵人工智能奖学金。这应由一个专门的基金来资助支持,以确定和吸引最优秀的人才,并确保英国向来自世界各地的有资历的专家开放。

 

三、如何最大程度的推动英国人工智能研究发展的建议

 

10.艾伦·图灵研究所应该成为人工智能和数据科学研究的国家性质的研究基地,并将其扩展到目前的五所大学之外,将其重点放在如何大力发展人工智能。

 

11.大学应该使用清晰的、可访问的以及可能的公共政策和实践来授权知识产权,并建立相应的公司。

 

12.艾伦·图灵研究所、工程与物理科学研究委员会(EPSRC)、科学技术设施委员会(STFC)和联合信息系统委员会(JISC)应建立协同合作,共同协调人工智能研究计算能力的需求,并因此为英国研究界进行相应的沟通协商。

 

四、关于支持人工智能应用落地的建议

 

13.英国政府应与企业和专家合作,建立一个英国人工智能委员会,帮助协调和发展英国的人工智能。

 

14.信息专员办公室和艾伦·图灵研究所应共同制定一个框架,来解释人工智能的流程、服务和决策,以提高透明度和问责制。

 

15.国际贸易部应扩大其目前对人工智能企业的支持计划。

 

16.英国经济如何成功利用人工智能技术来面对当下的机遇和挑战?TechUK应该与英国皇家工程院、Digital Catapult以及业界的关键人物合作,共同为其制定切实可行的指导方针。

 

17.借助政府数字服务的专业知识、数据科学的伙伴关系以及与其他部门的数据打交道的专家,政府应制定一项行动计划,为公共部门做好准备,并推广应用人工智能技术,用于改善公民运作和服务的最佳实践。

 

18.政府应确保产业战略挑战基金(ISCF)和小型企业研究计划(SBRI)所面临的挑战,旨在吸引和支持人工智能在整个挑战领域的应用,并为人工智能领域的公共部门数据提供资金支持。

 

第一部分:人工智能的定义,以及本报告的写作目的

 

一、什么是人工智能?

 

人工智能(AI)描述了一套先进的通用数字技术,能够让机器高效地完成复杂的任务。

 

工程和物理科学研究委员会使用了这样的描述:“人工智能技术的目的是复制或超越计算机的能力,如果人类要执行它们,就需要‘智能’。这包括:学习和适应;感觉理解和互动;推理和规划;对程序和参数的优化;自主能力;创造力;以及从大量不同的数字数据中提取知识和预测。”

 

目前人工智能的应用例子包括:用自然语言与计算机通信,从传输数据中获取新的数据,自主操作和自适应的机器人系统的建立,管理供应链的应用,以及更多贴近生活的视频游戏的设计。如今,人工智能的应用已经改变了金融服务、法律、医药、会计、税务、审计、建筑、咨询、客户服务、制造和运输等领域的商业实践。关于人工智能的应用还有数不清的例子,各行各业都有AI的身影。人工智能可以改善大多数数字操作、产品和服务的功能。在任何一个使用数字数据的流程中,人工智能都可以让我们更有效地使用这些数据,并且以新的方式使用这些数据。

 

这份报告将“人工智能”解释为一个统称,涵盖了从统计学、计算机科学和认知心理学发展而来的一系列互补技术,同时承认特定技术和术语之间的区别(例如,人工智能与机器学习、机器学习和深度学习之间的区别),在考虑如何支持开发和使用这些技术时,将这些技术看作一个整体是很有用的。

 

二、为什么人工智能很重要?

 

人工智能很重要,因为它可以带来巨大的经济和社会效益。这对提高现有产业的生产率(当下英国经济的迫切需求)和创造全新的产品服务有着巨大的潜力。

 

据估计,截至2024年,全球人工智能解决方案的市场价值将超过300亿英镑,部分行业在人工智能的帮助下,生产率提高了近30%,成本节约近25%。另一项估计表明,“2030年,人工智能将为全球经济贡献高达15.7万亿美元,这一数字将大于中国和印度目前的产量之和。其中,估计约有6.6万亿美元得益于生产率的提高,9.1万亿美元来自消费方面的影响。”

 

对于人工智能整体的估计结果是令人震惊的,可见未来人工智能的趋势势不可挡,所以关注人工智能在主要商业领域的应用是至关重要的。以下内容摘录自普华永道的报告章节《AI在医疗、汽车和金融领域的近期、中期和长期潜力》,据悉,该报告同样涵盖了运输和物流;技术、通信和娱乐;零售业;能源和制造业等内容。

 

在不同的行业中,人工智能的应用、时间脉络、收益和困难瓶颈有所不同,这使得AI在整个经济中难以一概而论,也很难在整个经济体中提出令人信服的预测。但显而易见的是,人工智能具有巨大的潜力,可以改善许多行业的运行情况。

 

三、医疗保健

 

目前医疗保健行业最具人工智能潜力的三个方向:

 

1.病情诊断的支持,比如从患者的健康数据中或与相似患者数据的对比重检测出微小的变化。

 

2.潜在流行病的早期发现与该疾病的发病率的相应追踪,以帮助预防和控制疾病的传播。

 

3.影像诊断的支持(适用于放射学、病理学等)。

 

患者利益:在早期和中期,提供更快、更准确的诊断和更具个性化的治疗方案,这将为智能植物(intelligence plants)等领域的长期突破铺平道路。最终的好处是改善健康,挽救生命。

 

节省时间:更有效的预防措施有助于减少疾病的发生和住院的风险。另外,快速检测和诊断将允许更早进行病情干预。

 

人工智能在医疗保健行业发展的时间脉络:

 

短期潜力:医疗保险和智能日程安排(比如门诊看病预约和手术排期)。

 

中期潜力:数据驱动的诊断和虚拟药物的开发。

 

长期潜力:机器人医生对患者进行直接诊断和治疗。

 

困难和障碍:需要解决人们对于隐私问题和敏感健康数据保护的担忧。人类生物学的复杂性以及对进一步技术发展的需要,也意味着一些更先进的应用程序可能需要更长的时间的研发,从而充分发挥它们的潜力,并获得患者、医疗服务提供者和相关监管机构的认可。

 

高潜力落地应用:基于人工智能的诊断方法,将患者的个人病史作为基准,在此基础上,小偏差的数据的出现,可能意味着健康状况的改变,进而提醒人们需要进一步的观察和治疗。人工智能一开始会被人类医生作为诊断和治疗的辅助工具,并不会取代人类医生。它将增强医生的诊断能力,但在此过程中也为人工智能提供了有价值的学习数据,使其能够不断地学习和改进。人类医生与人工智能诊断之间的这种持续互动将提高系统的准确性,并随着时间的推移,让人类对AI医疗足够的信任,进而让人工智能系统完全自主地运行。

 

四、汽车

 

目前汽车行业最具人工智能潜力的三个方向:

 

1.自动共享车队。

 

2.半自动驾驶功能,例如司机助手。

 

3.引擎监控和预测,自动维护。

 

消费者利益:一台能让你驾驶的机器和“按需应变”的灵活性功能——比如一个小模型让你穿梭在整个城市之间,或者一个更大、功能更多的交通工具,让你在周末出行。

 

节省的时间:美国人平均每年花在开车上的时间接近300个小时——如果你不需要把时间花在开车上,剩余的这些时间你可以做更多的事。

 

人工智能在汽车行业发展的时间框架:

 

短期潜力:自动驾驶辅助系统(如停车辅助、车道拥挤辅助、可调节的自适应控制等)。

 

中期潜力:零部件的按需制造和维护。

 

长期潜力:发动机监控和预测,自动维护。

 

困难和障碍:技术仍然需要不断地发展,例如在极端天气条件下,如何让无人驾驶汽车安全地运行,这可能会带来更大的挑战。即使这项技术已经存在,它也需要获得消费者的信任和监管部门的认可。

 

高潜力落地应用:自动共享车队。自动驾驶的共享车队可以让外出旅行的人随时随地选择需要乘坐的车辆,而不是必须用自己的车去实现,也不需要在一辆汽车上花费大量的时间和金钱来购买保险和维修费用。大部分的数据都是可用的,而且技术正在进步。然而,企业仍然需要赢得消费者的信任。

 

五、 金融服务

 

目前金融服务行业最具人工智能潜力的三个方向:

 

1.个性化的财务规划。

 

2.欺诈侦查和反洗钱。

 

3.流程自动化,不仅包括后台办公功能,还包括面向客户的操作。

 

消费者利益:更个性化和更全面的(如健康、财富和退休)解决方案的制定,这使资金充分利用(例如将多余的资金投入到投资计划中),并更加适应消费者需求的变化(如收入的变动或家庭计划改变所带来的消费变化)。

 

人工智能在金融服务行业发展的时间框架:

 

短期潜力:机器人咨询、自动保险承保和机器人流程自动化,比如财务和合规。

 

中期潜力:基于消费者的情绪和偏好优化产品设计。

 

长期潜力:从预期会发生什么、以及在诸如可保损失预测性分析等领域,到在降低事故率或改善消费结果等领域积极塑造结果(说明性分析)。

 

节省的时间:客户可以及时且充分了解财务状况和未来计划的信息,并令其适应不断变化的环境。企业可以通过开发定制化解决方案来支持这一做法,而不是指望消费者通过多种选择来找到合适的解决方案。

 

困难与障碍:消费者的信任和监管部门的认可。

 

高潜力落地应用:个性化的财务规划。尽管人类的理财建议成本很高,而且耗时,但人工智能的发展,如机器人咨询,已经使得为大众市场消费者开发定制的投资解决方案成为可能,直到最近,只有高净值(HNW)客户才可以使用这些解决方案。资产管理是动态管理的,以匹配目标(如为抵押贷款而储蓄),并优化客户的可用资金,因为资产管理公司变得更加重要,在某些情况下,取而代之的是人工智能。技术和数据已经到位,但仍需要客户的信任度的增加,才能充分发挥潜力。

 

为什么人工智能在英国、在当下至关重要?

 

在英国,当前提高人工智能能力的行动(尤其是在数据和技能方面)至关重要,因为早期的领导者(企业和国家)可以在建设和使用人工智能的过程中获得巨大而持久的优势。

 

人工智能之所以对英国来说很重要,是因为目前英国是人工智能领域领先的国家之一。这种优势可以建立在成功的基础之上,否则将会失去其优势。其他国家的不同行业也正在开始逐步应用AI。英国各行各业都面临这巨大的竞争压力。

 

当然,英国在人工智能发展的历史上也有着其独特的地位。在过去,公共支持一直非常有效,使英国能够在人工智能领域取得进展。

 

现在人工智能之所以很重要,是因为技术已经成熟到可以被广泛应用的程度。尽管人工智能技术已经发展了几十年,并且已经在一些消费者服务中应用了好几年,但在过去的5年里,对人工智能的兴趣和投资已经达到前所未有的水平,这同时也促进了人工智能的飞速发展。

 

近期的AI性能和应用的改进是由以下因素驱动的:

 

1.日益强大且成本在承受范围之内的计算能力。

 

2.新的和更大的数据量。

 

3.由具有特殊技能的专家开发的新型算法和应用程序。

 

第二部分:对当前的人工智能应用、市场及发展基础概述。

 

基本因素:数字环境、硬件、数据。

 

英国的人工智能商业活动:全球科技公司、人工智能创业公司、地理分布、知名行业人工智能、公共部门人工智能、经济影响评估等。

 

英国对人工智能发展的支持:国际背景、投资力度、对比、政府支持。

 

数字环境:

 

人工智能是数字革命的下一个发展阶段,为数字技术提供了新功能。纵向看提高了数字技术行业的影响力,横向看提高了数字化行业的经济性。在未来,它可能会为每一个产生大量数据的行业做出贡献。目前英国的人工智能行业正在当地技术基础上不断发展,在国际标准化方面有着显著优势。

 

2015年,数字科技行业营收约为1700亿英镑,比前5年增长了22%。英国现在有164万个数字技术工作岗位,在2011年到2015年间,其就业市场的增长率是非数字工作岗位的两倍多。

 

络安全是成熟数字行业的典范,在更多地使用人工智能的情况下我们可以直观地看到行业效果的提升。每天都有大量的组织面临网络威胁。相比于研究人员,机器学习可以更有效地识别、分类和分析这些数据。通过同时处理不同任务,涵盖大量的设备和系统,人工智能可以帮助防御大型攻击。一些自动化的网络安全功能可以更快速地识别异常行为,重点突出那些网络工程师可以跟踪的领域,并在网络弱点被利用之前迅速识别并进行补救。

 

并行人工智能应用已经在强化其他数字化领域的作用,硬件的改进和数据量的大幅增加,使得人工智能能够被配置到各个行业的数字功能中。

 

硬件:

 

随着硬件性能和可用性的不断提高,人工智能的开发和应用在国际层面普遍得到了加速发展。

 

中央处理单元(cpu)是在服务器、平板电脑、计算机和移动电话中解释和执行命令的标准设备。最近,图形处理单元的发展推动了机器学习和深度学习技术的发展,这些芯片可以同时进行多项计算,或者并行进行,加速机器学习的训练过程。谷歌已经针对机器学习开发了定制化芯片Tensor处理单元(TPU),并宣布计划进一步提高芯片功能;而图形处理芯片GPU开发商英伟达最近被MIT提名为世界上最聪明的公司。此外据报道,苹果正在为人工智能设备开发专门的芯片。这种竞争性发展使用高性能计算的成本大幅下降,并且在持续下降,使越来越多的用户可以采用人工智能。市场领导者公布的计划以及专家分析人士的报告表明,这种趋势将持续下去。

 

数据:

 

自2000年以来,全球产生的数据量呈指数级增长,其中很大一部分来自互联网和移动个人设备。包括物联网在内的并行技术,也促成了数据量的强劲上升曲线。这一趋势预计将持续下去。思科估计,从2016年到2021年,全球移动端数据流量将增长7倍。

 

目前数据经济的发展是推动国家和全球经济发展变化的强大因素。根据最近的一份政府政策文件,“我们的数据经济将是英国经济增长和未来繁荣不可或缺的一部分。”分析预测,从2015年到2020年,数据将使英国经济受益多达2410亿英镑。”

 

数据的快速增长也孕育了人工智能。对于机器学习算法的训练来说,获取海量数据和特定数据是成功的关键。正如英国皇家学会的机器学习报告所阐释的那样,为技术引入更大的数据集可以改进算法,并随着时间的推移不断优化结果。

 

要在一个行业中使用人工智能,有必要用与该行业相关的数据对人工智能进行训练。没有足够相关的高质量数据,人工智能技术就无法发展。训练数据的增加使人工智能算法的准确性提高,并使其能够在更多领域开展业务。

 

增加数据流量也让人工智能变得更有必要:一些领域的数据流量非常大,只有人工智能才有能力处理如此巨量且复杂的数据。

 

许多机构,其中既有公共部门,也有私营企业都拥有大量的数据。随着更多的业务被数字化,全社会将会产生比过去多得多的数据。然而,出于隐私、安全、商业优势和其他因素的考虑,一个组织很难或不可能向外界共享数据。即便是组织机构看到了推进安全数据共享的案例,并信任他们与之分享数据的外部组织,也往往缺乏达成协议的专业知识和技术技巧,无法在实践中建立信任,并有效地管理数据共享过程。在下面的第一组建议中,我们将更详细地讨论这一点。

 

英国的人工智能商业活动:

 

英国的人工智能公司被认为是世界上最具创新力的公司,其生态系统中包括人工智能的超大企业用户、大型和小型企业用户、人工智能服务的商业客户以及研究专家。人才和投资的竞争是全球性的,因此在全球背景下观察英国的商业活动才是有益的。

 

活跃在英国的所有大型全球科技公司都在开发和使用人工智能。一些创业公司已经被这些专业公司收购,而且很有可能还会有更多的创业公司出现。大公司利用不同的途径来积累专业知识,例如公司会采用并购的方法作为一种吸纳顶尖人才的方式,这种做法被称为‘人才收购’,通常是每人500万到1000万美元不等。”

 

IBM和微软向商业客户提供一系列的人工智能服务,用于关键功能(预测分析、计算机视觉、语言、客户服务、信息挖掘、物联网应用管理)和关键目标领域(金融服务、健康)。

 

据估计,英国有超过200家创业公司和中小型企业在开发人工智能产品。人工智能创业公司的成立是为了解决行业中的特定领域问题(比如个人健康问题)和重大技术挑战(比如网络安全领域的Darktrace)。

 

科技行业之外的大型老牌公司正在利用人工智能技术来提高运营效率和服务质量(Ocado,GE)。公共部门(例如HMRC)也在使用或探索使用人工智能来优化服务。

 

人工智能商业活动涵盖了一套快速发展、互补通用的技术,适用于多个领域。由于这些商业活动和相关组织的活动范围很难界定,在英国对人工智能进行定量或定性评估是非常困难的。发展变化的速度很快,企业之间和行业内部都存在各种不平衡,难以衡量。人工智能技术与其他大数据和数据科学应用之间并没有绝对的区别。

 

“人工智能并不是一种单一的技术或应用——无论是无人驾驶汽车、智能手机虚拟助手、趋势检测解决方案,还是无数其他例子都是如此。人工智能是一个丰富而多样的业务领域。”

 

在使用人工智能的地方,其通常被集成到其他数字功能中,不会完全与这些功能分离开来。许多人工智能活动都是组织内部的活动,而且很难从外部进行评估。其中很大一部分发生在国际科技公司,目前尚不清楚他们英国开发的是什么,以及在这里会使用了什么,因为来自全球的数据和各类创新团队在这些公司中不断发展。

 

没有一家公司的人工智能活动具有代表性。业务客户的范围很广,而且会变得更加复杂。人工智能活动已经涵盖了从顾问专家到全球主要公司,以及非常成熟的人工智能创业公司,它们都是通过人工智能增强核心功能的典型。我们能够获取一些关于公司信息和投资的数据,从而帮助确定那些人工智能优先的公司,但对后来者没有深入的了解。

 

规模更大、更老的企业正在收购更新的企业。会出现更多的新产品。一些小公司为知名公司提供人工智能服务。一些大型的老牌公司把提供人工智能作为一种服务。随着时间的推移,越来越多的知名公司会通过各种商业模式、组织架构以及产品和服务来使用人工智能(例如内部应用,现成应用,定制化应用,许可应用)。

 

因此,下面是对现有分析的概述,并会举例说明公司活动,并不是对英国所有人工智能活动的全面描述。

 

各种各样的活动确实让评估变得困难,但它应该被视为人工智能的优势。实现人工智能未来的经济价值,将取决于企业的使用范围和组合方式,它们是否能够对如何使用人工智能做出明智的选择,并准备好使用它。

 

全球科技公司的人工智能:目前主要由美国创立的全球数字公司将人工智能与核心业务结合在一起,其中一些人工智能正在英国进行开发。

 

在全球范围内,美国科技巨头似乎是人工智能领域的主要投资者,尽管从外部看,其发展程度和地域影响并不完全清楚。麦肯锡:“在全球范围内,我们估计科技巨头2016年在人工智能业务上的花费为200亿至300亿美元,其中90%用于研发和部署,10%用于人工智能收购。”在这一分析中也包括英国人工智能公司的收购,这些公司获得了媒体和公众的关注,被认为是行业对人工智能的兴趣所在。但其在人工智能的整体投资中只占相对较小的份额。

 

IBM是人工智能开发领域的先行者,其已经将人工智能作为一项服务。微软已经在人工智能领域进行了25年的投资,并将其整合进几项关键产品。这些主要科技公司对人工智能的兴趣有所不同。2016年12月,微软风投部门宣布成立了一个投资基金,专门投资人工智能创业公司,专注于“包容性增长和对社会的积极影响”。

 

Facebook、谷歌、亚马逊、苹果、微软和百度都使用人工智能来开发他们的主要服务,利用用户互动中产生的丰富、持续性数据流来持续不断地训练人工智能,提高面部识别、虚拟助手语言交流(Siri、Alexa、Cortana等)以及客户服务的效果。思科、三星和华为都在使用人工智能来开发自己的核心产品。

 

主要的软件供应商已经将人工智能应用程序添加到他们的服务套件中。SAP正在开发人工智能服务,将员工审批、支付处理和打折销售业务流程自动化。Sage推出了一款由人工智能驱动的“虚拟会计助手”聊天机器人,用于提交费用,并追踪发票的收据和支付,并整合到消息应用中。

 

将人工智能添加到全球企业的日常服务中,意味着消费者和企业用户在不知情的情况下就已经开始使用人工智能服务了。人工智能驱动的功能在外部不一定能观察到。

 

到目前为止,当美国主要科技公司收购英国的人工智能公司时,这些公司及其专业技能基本上都留在了英国。这是令人鼓舞的,但在未来却无法保证。收购公司是全球性的,可以将资产转移到那些最有利于开发和工作的地方。

 

吸引并留住这些全球巨头的投资和专业技能,是让英国成为人工智能最好发展环境的关键所在。

 

英国人工智能创业公司:英国已经培养出了一批非常具有创新精神的人工智能公司,而且这些公司正频繁成立。根据2017年Coadec的报告,“在过去36个月里,英国几乎每周都会成立一家新的人工智能创业公司”。2016年12月,一项研究估计,英国有226家独立的人工智能创业公司。

 

一些公司自称为人工智能行业的专家(Swiftkey、DeepMind和Ravn)。其中一些公司已经被收购,现在在更大的全球范围内运营,比如谷歌Alphabet旗下的DeepMind。一些英国人工智能公司专注于单一领域。

 

一些人正在研究NHS的关键问题。TechCity估计,2016年英国人工智能在数字技术领域的投资占到了3%,而且还在不断增长。它似乎是数字领域增长最快的技术之一。在总部位于伦敦的金融服务创业加速器Startupbootcamp的申请中,有十分之一都是在探索利用人工智能技术。然而,Coadec指出,在英国的10家人工智能公司中,只有1家处于“增长”阶段,而美国的这一比例为20%。

 

英国关键行业的人工智能公司:

 

医疗保健/生命科学:其被视为人工智能最重要的领域之一,既能提供更好的服务,也能提高效率。BenevolentAI使用人工智能来加速药物的运送过程。Babylon Health与英国国家医疗服务系统合作,通过移动设备测试聊天机器人对病人提供建议。该公司最近完成了6000万美元的融资。Your.MD开发的个人健康助理是一款免费的聊天机器人,能够为用户提供个性化且可行性高的医疗建议。

 

数字营销:英国在数字营销、销售和商业开发等多个领域都有人工智能公司。AdBrain的客户ID映射平台让营销人员能够对不同设备、渠道和平台的个人消费者进行定位和跟踪,从而实现更好的营销效果。Pixoneye提供基于人工智能的图像和手机图片功能分析,帮助客户更好地划分用户群体。Attest Technologies将人工智能技术用于市场研究,Growth Intel则将人工智能改进为商业智能,用于商业开发。Decibel Insight专注于网络分析。

 

汽车:互联网汽车和自动驾驶汽车为人工智能公司提供了巨大的增长机遇。位于布里斯托尔的FiveAi公司致力于开发安全自动驾驶技术。牛津的Oxbotica公司则开发了一套自动驾驶系统。Selenium利用来自激光和车载摄像机的数据进行自动导航。

 

身份鉴别:新诞生的RegTech(监管技术)领域让一些公司使用人工智能来辨别身份。Onfido使用机器学习技术对公司进行全球背景调查。

 

金融服务:用人工智能对金融交易行为进行分析可以控制欺诈交易的风险。Chatbots使用智能语音记录的聊天机器人处理来自客户的电话请求。为了通过个人“声纹”来提高安全性,汇丰银行推出了一款聊天机器人“奥利维亚”,用于验证用户身份。2017年5月有报道称,到2019年,特许金融分析师协会的考试将包括人工智能、机器人咨询服务和分析大数据等相关考题。

 

法律技术:人工智能已经开始帮助律师进行法律文件搜索,识别标准,审查文件,以及自动起草法律文本。Pinsent Masons的TermFrame系统可以检索法律先例和模板。MarginMatrix是Allen&Overy和德勤联合成立的一家合资公司,它会自动起草法律文件,帮助银行遵守新的金融监管规定。据报道,该公司把法律文件的起草时间从几小时缩短到了几分钟。

 

教育:人工智能可以提高教育的有效性,例如通过评估在线学习的效果,提供更好的个性化服务。Gradescope为教师提供自动评分服务。

 

正如上面提到的,总部位于美国的全球性科技公司对英国人工智能公司进行了大量高价值收购。2012年的Evi;2014年的DeepMind;2015年的VocalIQ;2016年的SwiftKey和Magic Pony 。

 

英国政府AI报告(全文):18条建议抢夺AI主导地位

 

人工智能公司在英国的地理分布

 

虽然大多数人工智能公司都位于伦敦,但在英国各地有许多同类企业。下面的地图是开放数据研究所(Open Data Institute)开发的,展示了与科技活动、科学出版物以及诸如当地技能、创业率和研发支出等数据基础上的人工智能相关活动。

 

英国政府AI报告(全文):18条建议抢夺AI主导地位

 

伦敦:伦敦是英国人工智能创业公司和中小企业的中心。在英国排名前50位的人工智能公司中,有80%的公司都位于伦敦,许多跨国公司也在此设有人工智能机构(比如DeepMind、Adbrain和BenevolentAI)。伦敦大学学院、国王学院和帝国理工学院都有实力不凡的人工智能和机器学习研究小组,这些研究小组加强了这一群体的影响力。企业家会首先将工程师和计算机科学家聚集在一起,建立公司,并将重点放在人工智能上。Cognition X是一个社区市场智能平台,它提供了构建人工智能解决方案所需的产品和资源信息集合。它提供关于人工智能的每日时事通讯、发展大势、行业研究和人才服务。自2016年成立以来,该公司已经举办了超过40场活动,拥有7000名会员,并列出了10000家支持人工智能市场的各类组织。

 

剑桥:包括Evi、Vocal IQ、Cytora、SwiftKey和Darktrace在内的一系列人工智能创业公司都是在剑桥创建的,它们通常与剑桥大学计算机学院密切相关,并得到了像Amadeus Capital这样的本地投资者支持。包括亚马逊和苹果在内的国际科技公司也在该地区拥有人工智能研发机构。

 

爱丁堡:爱丁堡大学在数据分析和人工智能方面培养出了不少成功公司,例如Skyscanner。亚马逊已经在此建立了一个专注于机器学习的研发中心。当地的CodeBase是英国最大的创业孵化器,与80多家科技公司建立了合作关系。

 

牛津:牛津大学是著名的机器学习和深度学习中心,已经成功培育出包括Dark Blue Labs和DeepMind在内的知名公司。布里斯托:布里斯托拥有包括惠普、甲骨文和BAE系统公司在内的大型科技公司,以及一系列人工智能领域的年轻企业。Five AI主要开发自动驾驶汽车软件。Graphcore将人工智能功能置于低功耗的消费设备中。布里斯托大学的智能系统实验室(Intelligent Systems Lab)和得到国际认可的机器人实验室(Robotics Lab)培养了大量的人工智能人才。

 

原文链接:http://urlmulu.com/AIGongSi/613.html
标签:英国政府AI报告