邢波(Eric Xing)

2018-08-08 20:05:11  作者:urlmulu.com 点击: 评论:0

  
邢波(Eric Xing)
 
邢波(Eric Xing)
 
职位:卡耐基梅隆大学教授,曾于2014年担任国际机器学习大会(ICML)主席。
 
 
主要研究
 
 
兴趣集中
 
 
在机器学习和统计学习方法论及理论的发展,和大规模计算系统和架构的开发。
 
 
成就
 
 

他创办了Petuum 公司,这是一家专注于人工智能和机器学习的解决方案研发的公司,腾讯曾投资了这家公司。 

 

成名之路

 

问:从生物学博士到计算机科学博士,再到机器学习领域的佼佼者,这样的转变是如何发生的?

 

Eric:“为什么会选择进入一个新的专业?因为兴趣。当时对手头做的研究项目兴趣不够,而同时又有其他的东西让自己很着迷,所以在完成前项工作后就选择了转变。现在回头看,这样的转变在我的生活中并不少见,比如,我最近开始在做计算机系统相关的研究。操作系统跟机器学习是很不一样的领域,这种转变的距离和我之前的转变一样远,但兴趣使然。15年前,人工智能和机器学习在美国学术圈很冷门,中国人不多、美国人也不多,当时基于兴趣选择转专业,现在也一样。当选择改变时,不要把它当个大事,要把生理和心理障碍压到最低。”

 

问:不少人认为,做科研极为枯燥。你认为这里面有误解吗?

 

Eric:“确实有人觉得科研枯燥、与产品的结合不够紧密,像是对未来的虚幻想象。这其中有一些误解。很多人基于片面的理解或有限的经验,简单的把理论研究和应用研究对立起来,并由此产生一种肤浅的排他思想;比如有些“基础研究”学者瞧不起“应用研究”学者,认为后者不严格正统,或者有些业界的工程师程序员也鄙视大学里的研究者,认为后者不实用。抱有这种想法的人很难成为领先的学者和工程师。其实计算机科研是最不枯燥的研究,优秀的计算机研究往往体现着理论和现实问题的紧密结合。它不是纯粹推导公式、设计模型,证明定理;也不是埋头编程,调参,试错。严谨的计算机科研需要跟数学打交道,这可能对于某些人来说,有些枯燥;但对于另一些人来说,这仍然很有趣并令人兴奋。事实上,谷歌的搜索引擎、微软的Kinect等都是由基础研究衍生出来的产品——当你把研究跟实际应用结合起来,兴趣是很容易产生的。或许研究过程中会比较理论,但我们是基于现实应用问题来提出研究问题。当你希望用一个漂亮的方法(正规、严密,普适,可独立重复的方法)解决问题时,你自然会使用数学手段;但是最后的实现、评估、证明等是从理论和实际应用两个方面来出发,这样就会很有意思。

 

问:有传闻说您每天只睡4-5个小时,做科研这么忙吗?

 

Eric:“我不是为了忙而忙,而是顺其自然。就好像弹琴有的地方弹得快了后,慢了自己都不好意思,快反而是一种自然的节奏。有时候会更慢一些、有时候会更快一些,也没有刻意去保持。当然,其实从生活质量来说,也没有那么可怕。我也有进行规律的健身锻炼,业余爱好,跟家人一起玩,等等,我不提倡把自己弄得很憔悴、不顾家庭或不跟朋友交往。如何做到呢?不要浪费时间。睡几个小时是个人生理特征,但是在不睡觉的时间里,要怎么用?大部分人在大部分时间处于什么都没做的状态,他们既没有做公事,也没有做私事,但我基本上不存在这样的时间,我要不就做一些跟工作有关的事,要不就抽空锻炼、弹琴,听音乐,看书,,或跟家人一起活动。虽然没有一个明显的工作到生活的某个切换点,但找准了工作和生活的节奏,还是很自然。对于我来说,研究、健身等事情不是要‘坚持’才能做到的事儿,而是我迫不及待要去做,这些都不是很难受的事儿。”

 

 

原文链接:http://urlmulu.com/AIZhuanJia/8690.html
标签:邢波(Eric Xing)